
G591B – SQL Injection Attacks: Information and Avoidance Page 1 of 7

Information Technology Resource Management Council (ITRMC)

ENTERPRISE GUIDELINES G500 – SECURITY PROCEDURES

Category: G591B – SQL Injection Attacks: Information and Avoidance

CONTENTS:
I. Definitions
II. Rationale
III. Guideline
IV. Procedure Reference
V. Reference Documents
VI. Contact Information
VII. Review Cycle
VIII. Timeline
IX. Revision History

I. DEFINITIONS

A. SQL Server – System that runs a database accessed with Structured Query

Language (SQL).
B. SQL Injection Attack – An attack in which a malicious user attempts to insert

database commands in place of expected data during a SQL query.

II. RATIONALE

The purpose of this guideline is twofold: to provide background information
regarding SQL Injection Attacks so agency staff understand related risks, and to
provide techniques to ensure systems are not vulnerable to SQL Injection
Attacks.

SQL Injection Attacks take advantage of vulnerabilities in applications which
allow bad actors to execute queries against a target database. These queries
can expose confidential data, change data for other customers, or even delete
entire data tables.

Attempts to exploit this particular vulnerability are very common, and there have
been state systems with this vulnerability in the past.

Because of the prevalence of this vulnerability, the extreme risk if an exploit
occurs, and the frequency of attacks throughout the public Internet, it is critical
that agencies are aware of risks and mitigation strategies for SQL Injection
Attacks.

G591B – SQL Injection Attacks: Information and Avoidance Page 2 of 7

III. GUIDELINE

This guideline is part of the G590 series and it addresses SQL Injection Attacks.
Implementing this guideline will better secure all state-used database servers in
accordance with ITRMC Enterprise Standard S3230 – Server Security
Requirements.

IV. PROCEDURE REFERENCE

The following pages will address specific procedures to mitigate risks of SQL
Injection Attacks:

A. Stored Procedures

B. Data Access Architecture

C. Prepared Statements

D. Escaping Characters

E. Least Privilege

A. Stored Procedures

1. Details: Stored procedures not requiring parameters can be susceptible to

SQL Injection if they allow unfiltered input from the user or dynamically
generated query statements.

2. Description: Implement the use of the CallableStatement (Java) or

SqlCommand (.NET) stored procedure interfaces in applications. Confine
database action statements (QUERY, DROP, UPDATE, etc.) within stored
procedures whenever possible.

3. Solution: Using stored procedures with parameterization enables the

Developer to clearly specify data types as well as the final communication
statement generated to the database. If dynamically generated queries
cannot be avoided within the stored procedure, include parameter validation
for the input and carefully consider the other mitigation procedures that
follow.

4. References:

a. Dynamic SQL and SQL injection
http://blogs.msdn.com/b/raulga/archive/2007/01/04/dynamic-sql-sql-
injection.aspx

b. OWASP SQL Injection Prevention Cheat Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_
Sheet

http://itrmc.idaho.gov/psg/s3230.pdf
http://itrmc.idaho.gov/psg/s3230.pdf
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

G591B – SQL Injection Attacks: Information and Avoidance Page 3 of 7

B. Data Access Architecture

1. Details: Review all Data Access components, Service Agents and
applications to determine the best way to map application entities to Data
Structures.

2. Description: All aspects of the data access layer must meet the

requirements of the application, perform efficiently and securely, and be
easy to maintain. Data Access components abstract the logic required to
access the underlying data stores. Service Agents implement data access
components that isolate the varying requirements for calling services from
the application and provide basic mapping between the format of the data
exposed by the service and the format the application requires.

Applications can help prevent SQL Injection attacks by preventing Meta
characters from being passed to the data structure and by not displaying
Server error messages.

3. Solution: Review and implement Data Layer Guidelines for Data Access

components and Service Agents. Update the current Software Development
Life Cycle to include the filtering of Meta characters and detailed error
messages for applications.

4. References:

a. Microsoft Application Architectural Guide, Ch.8: Data Layer

Guidelines
http://msdn.microsoft.com/en-us/library/ee658127.aspx

b. Analyzing SQL Meta Characters and Preventing SQL Injection
Attacks Using Meta Filter
http://www.ipcsit.com/vol6/33-E080.pdf

c. Creating Custom ASP Error Messages
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q224070

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

G591B – SQL Injection Attacks: Information and Avoidance Page 4 of 7

C. Prepared Statements

1. Details: Database queries stored and maintained within an application may
be modified with user input at runtime. A malicious user may attempt to insert
database commands in place of expected data.

2. Description: A Prepared Statement is a special database query maintained

within the application. The execution of the prepared statement is supported
by the database connection provider or the ODBC driver located on the client
or web server.

Preparing a statement provides additional security only when parameter
markers are used. The application variables bound to parameter markers are
type checked, not interpreted literally and not executed as database
commands.

3. Solution: Developers should be trained to write all database queries

maintained by the application and incorporating user inputs as prepared
statements. All user inputs should correspond to parameter markers.

Binding the parameter to an application variable is the mechanism that grants
protection from SQL injection. Developers must ensure that all USER inputs
are sent as parameters and are not dynamically added to the prepared
statement at run-time.

4. References:

a. Preparing SQL Statements http://msdn.microsoft.com/en-
us/library/ms175528.aspx

b. OWASP Open Web Application Security Project SQL Injection
Prevention Cheatsheet (Prepared Statements)
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_
Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized
_Queries.29

c. Using Prepared Statements
http://download.oracle.com/javase/tutorial/jdbc/basics/prepared.html

http://msdn.microsoft.com/en-us/library/ms175528.aspx
http://msdn.microsoft.com/en-us/library/ms175528.aspx
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29
http://download.oracle.com/javase/tutorial/jdbc/basics/prepared.html

G591B – SQL Injection Attacks: Information and Avoidance Page 5 of 7

D. Escaping Characters

1. Details: Dynamically built SQL commands, if incorporating unexamined

user strings, can include commands which will compromise the security of
your data.

2. Description: Data strings received from users via GET or POST input, if

accepted “as is,” can be manipulated to include a command to provide the
nefarious user with a data dump, to drop the database table, or any other
SQL command.

One POST example is manipulating a login form, with username and
password fields, to deliver all user passwords by entering anything in the
username field and bar’ OR ‘’=’ in the password field.

A GET example is changing URL from http://domain.com/file.cfm?pid=101
to http://domain.com/file.cfm?pid=101;DELETE+products (where products is
the name of a table).

3. Solution: Use functions to vet or evaluate any data received from users or

which can be “touched” by users. Never trust user-supplied data strings.

4. References:

a. Wikipedia page on SQL injection (see Technical Implementations section)
http://en.wikipedia.org/wiki/SQL_injection

b. OWASP Open Web Application Security Project
SQL Injection Prevention Cheatsheet (Escaping User Supplied Input)
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_She
et#Defense_Option_3:_Escaping_All_User_Supplied_Input

c. Ben Forta’s ColdFusion Blog: SQL Injection Attacks, Easy To Prevent,
But Apparently Still Ignored
http://br.sys-con.com/node/165921

d. Filtering SQL Injection from Classic ASP
http://blogs.iis.net/nazim/archive/2008/04/28/filtering-sql-injection-from-
classic-asp.aspx

e. SQL Injection Attacks by Example
http://unixwiz.net/techtips/sql-injection.html

f. Detection SQL Injection and Cross Site Scripting Attacks (includes
RegEx)
http://www.symantec.com/connect/articles/detection-sql-injection-and-
cross-site-scripting-attacks

g. PHP online Manual page on SQL Injection
http://php.net/manual/en/security.database.sql-injection.php

http://en.wikipedia.org/wiki/SQL_injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_3:_Escaping_All_User_Supplied_Input
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_3:_Escaping_All_User_Supplied_Input
http://br.sys-con.com/node/165921
http://br.sys-con.com/node/165921
http://blogs.iis.net/nazim/archive/2008/04/28/filtering-sql-injection-from-classic-asp.aspx
http://blogs.iis.net/nazim/archive/2008/04/28/filtering-sql-injection-from-classic-asp.aspx
http://unixwiz.net/techtips/sql-injection.html
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks
http://php.net/manual/en/security.database.sql-injection.php

G591B – SQL Injection Attacks: Information and Avoidance Page 6 of 7

E. Least Privilege

1. Details: Provide the lowest level of privilege possible while still allowing

customers and applications necessary access.

2. Description: Different types of data querying require different levels of
access. If data is accessed using exclusively stored procedures, access to
base tables can be restricted. Customers and applications can be provided
access only to execute the stored procedures, and are thereby limited in what
they can do.

If permissions are limited in this way, it not only reduces the risk of SQL
injection attacks, it also eliminates the risk of internal staff connecting to
production tables with tools such as MS Excel and inadvertently causing
harm.

3. Solution: If possible, do not provide customers or applications any direct

permissions to the base tables. If all data access is performed using stored
procedures, permission can be granted only to execute the stored procedures
necessary. Moreover, always provide the least amount of permissions which
enable customers and applications to do their work.

4. References:

a. OWASP SQL Injection Prevention Cheat Sheet

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_
Sheet

V. REFERENCE DOCUMENTS

In addition to this guideline, the following documents apply:

A. ITRMC Enterprise Standard S3230 – Server Security Requirements

B. ITRMC Enterprise Guideline G590A – Server Operating System

C. ITRMC Enterprise Guideline G590B – Public-Facing SQL Server Setup

VI. CONTACT INFORMATION

For more information, contact the ITRMC Staff at (208) 332-1876.

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://itrmc.idaho.gov/psg/s3230.pdf
http://itrmc.idaho.gov/psg/g950A.pdf
http://itrmc.idaho.gov/psg/g590B.pdf

G591B – SQL Injection Attacks: Information and Avoidance Page 7 of 7

VII. REVIEW CYCLE

Twelve (12) months

VIII. TIMELINE

Date Established: November 22, 2011
Last Reviewed:
Last Revised:

IX. REVISION HISTORY

11/22/11 New document.

